3(x^2-7x-1)+5=2(x+1)

Simple and best practice solution for 3(x^2-7x-1)+5=2(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x^2-7x-1)+5=2(x+1) equation:



3(x^2-7x-1)+5=2(x+1)
We move all terms to the left:
3(x^2-7x-1)+5-(2(x+1))=0
We multiply parentheses
3x^2-21x-(2(x+1))-3+5=0
We calculate terms in parentheses: -(2(x+1)), so:
2(x+1)
We multiply parentheses
2x+2
Back to the equation:
-(2x+2)
We add all the numbers together, and all the variables
3x^2-21x-(2x+2)+2=0
We get rid of parentheses
3x^2-21x-2x-2+2=0
We add all the numbers together, and all the variables
3x^2-23x=0
a = 3; b = -23; c = 0;
Δ = b2-4ac
Δ = -232-4·3·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-23}{2*3}=\frac{0}{6} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+23}{2*3}=\frac{46}{6} =7+2/3 $

See similar equations:

| h/2-2=1 | | 8(t+2)-3(t-4)=6(1-7)+8 | | 5=8x-7-2x | | 11x-17=3x+4+3x+4 | | -2-5(1-5v)=68 | | -128=-8(1-5v) | | 3h-6=12 | | 6x+3=-1+2x+11 | | 17-20q=-52-20q | | X/2^+5=1/3(x+14) | | -16=28/2a-3 | | -3x33=-12 | | 5p-49=7p-97 | | -10q=-9q+10 | | 1.20*x=500 | | 2(4x-1)=3x+3 | | 4(3w-7)=2(6w-12) | | p-6+2p=-6 | | 3x+33=~12 | | -3+7=-9y+49 | | -126=7(-3-3k) | | 12x=8=104 | | p=3p-30 | | 22x+60=30x | | 5t=8t-33 | | .11d=10+d | | 9w-12w=9 | | -3b-8(-4+2b)=-120 | | 36-6u=3u | | -3(6v-9)9v=7(v+3) | | 11.2n+6=5.2 | | 37x-42=21x-10 |

Equations solver categories